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 ON WIND-INDUCED OSCILLATION OF
 SAIL-BALLAST SYSTEMS
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 Saitama Institute of Technology Okabe , Saitama ,  3 6 9 - 0 2 , Japan
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 A yacht often rolls very violently when it is sailing down-wind .  This divergent oscillation
 may be dangerous enough to capsize the yacht .  This study models a yacht as a sail-ballast
 system rolling in a wind .  A mathematical model is presented to account for this
 phenomenon .  Experiments have also been made for systems with triangular and elliptic
 sails .  Analysis of the nonlinear governing equation implies that the instability occurs owing
 to coupling ef fects between aerodynamic and righting moments :  in particular the large
 change in the side force under a small change in the angle of attack .  The experimental
 results support this argument regarding interaction ,  as well as the existence of three
 distinctive types of rolling motion :  divergence ,  divergent oscillation ,  and oscillation with
 weak damping .  Estimated and measured periods of oscillation are in fairly good
 agreement .  Evidence supports the idea that vortices behind the sails are not the main
 cause of the instability .

 ÷   1997 Academic Press Limited

 1 .  INTRODUCTION

 D OWN-WIND SAILING IS NOT ALWAYS STABLE .  A yacht often exhibits violent rolling ,  which is
 self-excited and can capsize the craft .  Marchaj (1988 ;  pp .  653 – 675) ,  a celebrated sailor
 and yacht – scientist ,  of fered an explanation for this self-excited rolling :  (i) the Ka ́  rma ́  n
 vortex trail forces initial oscillation ;  (ii) this oscillation is then amplified by aerodyna-
 mic forces .  One of the questions is how aerodynamic forces govern the motion .  We
 shall also ask how the ballast at the keel tip af fects the oscillation .  What sort of
 equation governs the motion? These questions have not been answered to date .

 In order to cast light upon the physics behind the rolling instability ,  we will introduce
 a simplified sail – ballast system .  Our model is similar to Marchaj’s .  A system has a sail
 and a piece of ballast put on a single shaft that can roll in the wind .  We have used
 triangular and elliptic sails .  These model systems represent the essential property of the
 motion .  Water and hulls af fect down-wind sailing ,  but we have neglected these ef fects
 due to limitations of available facilities .  Our model ,  however ,  serves as a first
 approximation to the actual phenomena .

 By analysing the model systems theoretically and experimentally ,  we arrive at a
 rigorous and sound explanation for the rolling instability of yachts .  Our conclusion
 emphasizes the important role played by the interaction between the aerodynamic
 forces and the righting moment .  The agreement between theoretical and experimental
 results is fairly good .

 In Section 2 we introduce the model system .  Section 3 describes the derivation of the
 equation governing the motion of the system and the analytical characteristics of the
 associated nonlinear dif ferential equation .  Section 4 describes the procedure and
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 Figure 1 .  Perspective view of the model system .

 apparatus for the experiments .  In Section 5 we show and discuss theoretical and
 experimental results .  In Section 6 we summarize our findings .

 2 .  MODEL SYSTEM

 The aim of this study is to understand the physics of rolling instability .  The main
 dif ficulty derives from the complicated geometry of a yacht as well as the existence of
 two kinds of fluid ,  i . e .,  air and water .  These characteristics can be circumvented ,
 however .  We have modelled a yacht as a sail-ballast system ,  because this accurately
 represents the essential configuration of a yacht .  Due to limitations of available
 facilities ,  we have used conventional wind tunnels only .  Therefore our model could not
 account for the following ef fects :  (a) aerodynamic ef fects due to mirror images of sails ;
 (b) wind shear developed on the sea surface ;  (c) hydrodynamic damping due to the hull
 and keel .  These ef fects are to be studied in the future .

 Our model is shown in perspective view in Figure 1 and in the schematic sketch at
 the top of Figure 2 .  Instead of a sail ,  a hull and a keel with ballast in water and air ,  we
 adopted a system with a sail and a piece of ballast set upon a single shaft .  The system
 can roll in the plane perpendicular to the wind direction .

 3 .  THEORY

 3 . 1 .  E QUATION OF  M OTION

 The model and coordinate system ( r ,  b  ,  z ) are shown perspectively in Figure 1 ;   r  is the
 coordinate up the mast from the center of rotation ;   b   is a heel angle ;  and the  z
 coordinate is parallel to the direction of the uniform flow as well as the craft course .
 The model could swing in the rolling plane ,  which is perpendicular to  z .  Swing twists
 the direction of the relative wind :   U k  1  r b ~  k  3  i ,  where  U ,  k  and  i  denote the speed of
 the uniform flow ,  the unit vector in the  z -direction ,  and the unit vector in the
 r -direction ,  respectively ;  and a single dot denotes the first derivative with respect to
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 Figure 2 .  Nomenclature for the model system .

 time .  This swing motion is rather slow ,  as our experiments reveal :  a 0 ? 5  m tall sail heels
 at most 90 degs in a 7 ? 7  m / s wind .  The angle between the uniform flow and the relative
 wind at  r  is approximated by

 arctan( r b ~  / U )  <  r b ~  / U  ,  2 (0 ? 1) .
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 From this order estimate ,  we can deduce that the flow is quasi-steady :  we shall neglect
 any transient aerodynamic ef fects except the twist of the relative wind mentioned
 above .  Without loss of generality we can also state that three-dimensional ef fects are
 included in forces shown at the bottom of Figure 2 .  The figure describes the force and
 wind triangles at the sail section looking down from the mast top .  Note that all the
 aerodynamic forces are made nondimensional by dividing by the dynamic pressure
 times ,  the chord length or the sail area .  Let  C s   and  C d   be the sectional side force and
 drag ,  respectively ;  then the aerodynamic heeling force assumes the form

 C s ( a  2  r b ~  / U ,  r )cos( r b ~  / U )  2  C d ( a  2  r b ~  / U ,  r )sin( r b ~  / U )

 5  C s ( a  ,  r )  2  C s , a  ( a  ,  r ) r b ~  / U  2  C d ( a  ,  r ) r b ~  / U  1  2 ( b ~  2 ) ,

 where  C s , a   denotes the first derivative of  C s   with respect to  a .  We shall neglect
 higher-order terms than  b ~  2 .  Integrating this sectional ,  aerodynamic heeling moment
 along the mast ,  we have the equation of motion for the system about the center of
 rotation ,  or the origin :

 ( I 0  1  Mr  2
 B ) b ̈  5  1 – 2 r U 2 Sr T H e  1 C S ( a  )  2  [ e  2 C S , a ( a  )  1  e  3 C D ( a  )]

 r T

 U
 b ~  J  2  Mr B g  sin  b  ,  (1)

 where  I 0  , M , r B  ,  r  , S , r T  , C S   and  C D   denote ,  respectively ,  the moment of inertia with
 the ballast at the origin ,  the mass of the ballast ,  the station of the ballast down from the
 origin ,  the air density ,  the sail area ,  the mast height ,  the total side force coef ficient ,  and
 the total drag coef ficient .  Denoting the chord length by  c ( r ) ,  aerodynamic coef ficients
 e  1  ,  e  2  ,  and  e 3  are defined by

 C S ( a  )  5 E r T

 0
 C s ( a  ,  r ) c ( r )  d r  / S ,  C S , a ( a  )  5

 Û C S ( a  )
 Û a

 ,

 C D ( a  )  5 E r T

 0
 C d ( a  ,  r ) c ( r )  d r  / S ,

 e  1  5 E r T

 0
 C s ( a  ,  r ) c ( r ) r  d r  / h C S ( a  ) r T  j ,

 e  2  5 E r T

 0
 C s , a ( a  ,  r ) c ( r ) r 2  d r  / h C S , a ( a  ) r 2

 T j ,

 and

 e  3  5 E r T

 0
 C d ( a  ,  r ) c ( r ) r 2  d r  / h C D ( a  ) r 2

 T j .

 Dividing equation (1) by the total moment of inertia ,  we can rewrite the basic equation
 as follows :

 b ̈  5  τ  1  ( m  2  …  ) b ~  2  v  2  sin  b  ,  (2)
 where

 τ  5  e  1

 1 – 2 r U 2 Sr T C S ( a  )
 I 0  1  Mr 2

 B
 ,  m  5  2 e  2

 1 – 2 r USr 2
 T C S , a ( a  )

 I 0  1  Mr  2
 B

 ,

 …  5  e  3

 1 – 2 r USr  2
 T C D ( a  )

 I 0  1  Mr 2
 B

 and  v  5 –  Mr B g
 I 0  1  Mr  2

 B
 .

 We should note that  m   is positive ,  because  C S , a ( a  ) is negative in the down-wind
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 T ABLE  1
 Classification for singular points of equation (2)

 ( m  2  …  ) 2  2  4 v  2  cos  b T

 non-negative  negative

 m  2  …  positive
 zero

 negative

 unstable node

 stable node

 unstable focus
 center

 stable focus

 condition .  Although equation (2) is equivalent to those studied by Hayes (1953) and
 Nayfeh & Mook (1979 ;  pp .  131 – 134) ,  the nature of our equation does not necessarily
 lead to damped oscillation ,  unlike in those studies .

 3 . 2 .  A NALYSIS OF THE  G OVERNING  E QUATION

 Equation (2) has a stationary solution ;  putting  b ̈  5  b ~  5  0 ,  we have the solution

 b T  5  arcsin( τ v 2 2 ) .  (3)

 In other words ,  the system may come to equilibrium at  b  5  b T .  It is ,  however ,  not
 known whether this equilibrium is dynamically stable or not .

 After the standard procedure given by Nayfeh & Mook (1979 ;  pp .  110 – 117) ,  we can
 study the stability of these stationary solutions ,  or the singular points in mathematical
 terms .

 Examining the Jacobian of equation (2) ,  the nature of the basic equation is
 summarized by Table 1 .  The relationships between mathematical terms and kinds of
 motion are the following :  (i) an ‘‘unstable node’’ corresponds to divergent motion
 without oscillation ;  (ii) an ‘‘unstable focus’’ corresponds to divergent oscillation ;  (iii) a
 ‘‘center’’ corresponds to plane oscillation ;  (iv) a ‘‘stable node’’ corresponds to
 convergent motion without oscillation ;  (v) a ‘‘stable focus’’ corresponds to convergent
 oscillation .  On the basis of Table 1 we can draw the following conclusions .

 First we point out that the  m  2  …   term is the key to the stability .  The  m   term depends
 on  C S , a  ,  i . e .  the lift-curve slope ,  while the  …   term depends on the drag coef ficient  C D .
 Usually drag does not vary very much in value at  a  <  90 8 .  Therefore the rolling
 becomes unstable ,  as the lift-curve slope becomes steep .

 Another point is the cause of oscillation :  motion becomes oscillatory if the  v  2  cos  b T

 term becomes larger than the ( m  2  …  ) 2  term .  Since  b T  5  arcsin( τ v 2 2 ) ,  oscillation is
 induced by larger  v   and smaller  τ .  This situation is brought about by the combination
 of the larger moment of inertia and small side force ;  this fact leads to estimation of the
 oscillation period .  If  v   is much greater than  τ   and  m  2  …  ,  equation (2) is approximated
 by

 b ̈  <  2 v  2  sin  b  .  (4)

 This is the well-known equation for large-amplitude oscillation of a pendulum .  Suppose
 the initial angular velocity is zero ;  then the oscillation period ,  say  T ,  is given by the
 standard formula [e . g .,  equation (3 . 3 . 74) in Nayfeh & Mook (1979)]

 T  5  2 π  / v  5  2 π –  I 0

 Mr B g
 1

 r B

 g
 .  (5)
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 Another asymptotic form of equation (2) is obtained by letting  v   tend to zero .  The
 very small righting moment yields this situation .  Neglecting the last term on the
 right-hand side of equation (2) ,  we obtain

 b ̈  <  τ  1  ( m  2  …  ) b ~  .  (6)

 The equation above implies that the motion becomes divergent or convergent without
 oscillation .

 4 .  EXPERIMENTS

 4 . 1 .  F ORCE  T ESTS

 Figure 3 shows the schematic of the experimental system ;  the set-up for force tests is
 shown on the right half of the figure .  The smaller sail models were used for the force
 tests :  the length of luf f is 0 ? 28  m ;  the foot length is 0 ? 14  m ;  the mast length from the
 root is 0 ? 3  m .  The sails are made of a 0 ? 03  mm thick mylar sheet .  The Reynolds number
 was 1 ? 3  3  10 5  with the wind speed 11 ? 0  m / s .  The measurements were made at angles of
 attack in the range of 90  Ú  20  deg by 5  deg increments .  We have used a suction-type
 wind tunnel with closed test-section :  its cross-sectional dimensions are 0 ? 6  m  3  0 ? 6  m .

 Aerodynamic side force ,  drag ,  and moment were measured by the use of a
 cantilever-type force balance .  Analog data were digitized and then passed on to the
 computer .

 4 . 2 .  M OTION  A NALYSIS

 The set-up is described in the schematic diagram on the left half of Figure 3 .  The larger
 sail models were used for the motion analysis :  the length of luf f is 0 ? 4  m ;  the foot length
 is 0 ? 2  m ;  the mast length from the pivot is 0 ? 5  m .  Most parts of the system were made of
 aluminum .  The ballast consisted of a brass circular cylinder of 250  g .  Positions of the
 ballast could be set on the shaft in the range 30 – 300  mm from the pivot ,  in 10  mm
 increments .  Both the sail and the ballast are set upon a single shaft .  The shaft could roll
 in the plane perpendicular to the flow at the pivot .  Another shaft runs streamwise
 through this pivot ,  and is supported by a pair of ball-bearings .

 We used a blow-down wind tunnel with open test section .  The dimensions of the

Flow

Blow-down wind tunnel

Model

Computer

Rotary encoder

Force balance

Computer

Model

Flow

Suction wind tunnel

Fan

 Figure 3 .  Experimental apparatus .
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 Figure 4 .  Aerodynamic characteristics of the sails .

 outlet are 1 ? 2  m  3  1 ? 2  m .  The measurements were done at the wind speed of 7 ? 7  m / s ,  so
 that the Reynolds number was kept the same as in the force tests ,  i . e .  1 ? 3  3  10 5 .

 The measurements of heel angles were made by the use of an optical rotary-encoder ,
 which could detect an angle as small as 0 ? 45 deg .  Analog data were digitized and then
 passed on to the computer .

 We also conducted the flow visualization using the smoke-wire technique .

 5 .  RESULTS AND DISCUSSION

 5 . 1 .  A ERODYNAMIC  C HARACTERISTICS   OF  S AILS

 Figure 4 shows the results of the force tests .  Both sails have similar aerodynamic
 characteristics :  (i) the side force coef ficients change from 0 ? 8 down to around zero ;  (ii)
 therefore the slope of the side force coef ficients is negative and steep ;  (iii) changes in
 drag coef ficients are rather small ,  i . e .  from 1 ? 0 up to 1 ? 4 .  The dif ferences in planforms
 are summarized in the following :  (a) the side force coef ficient of the elliptical sail is
 smaller than that of the triangular sail ;  (b) the drag coef ficient of the elliptic sail is
 smaller than that of the triangular sail at almost every angle of attack .  These
 dif ferences imply this well-known fact :  the high ef ficiency of the elliptic wing .  The
 presence of the tunnel walls inevitably af fects the aerodynamics of the force test
 models .  Therefore ,  the characteristics of the force test models may dif fer from those of
 the sail-ballast systems quantitatively ,  although qualitative arguments are applicable to
 both systems in the same manner .

 Let us denote the angle of attack ,  at which the side force vanishes ,  by the zero-lift
 angle ,  designated by  a  0  .  The zero-lift angle of the elliptic sail is about 110  deg ;  the
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 Figure 5 .  Types of the rolling motion classified in the parameter plane ( a  ,  r B ) for the triangular sail .  Each
 inset shows typical motion under the corresponding conditions denoted by the adjacent symbol ;  the abscissa
 of the inset represents time ,  and one division corresponds to 1  s ;  the ordinate of the inset denotes the heel

 angle ,  and one division corresponds to 20  deg .

 zero-lift angle of the triangular sail is about 105  deg .  These angles will be referred to
 later to annotate the results of the motion analysis .

 5 . 2 .  M OTION OF  S AIL -B ALLAST  S YSTEMS

 Motion analyses were made under 252 sets of conditions for each model system :  (28
 ballast positions)  3  (nine values of angles of attack) .  Based on the observation and the
 analysis of heel-angle measurements ,  we found that motions of each system could be
 classified into three domains in the parameter plane ,  i . e .  ( a  ,  r B ) .  Figure 5 shows the
 results of motion analysis for the triangular sail-ballast system ,  and Figure 6 for the
 elliptic sail-ballast system .  Each inset in these figures shows the typical motion under
 the corresponding conditions denoted by the adjacent symbol in each domain ;  the
 changes in the heel angles are plotted against time .  Bold lines represent boundaries
 between adjacent domains .

 The three typical domains correspond to the following :  (i) divergent motion without
 oscillation ;  (ii) divergent oscillation ;  (iii) oscillation with weak damping .

 The domain of divergent motion is observed if the ballast-pivot distance is small ,  in
 the lower portions of Figures 5 and 6 .  Typical conditions ,  denoted by open symbols ,  are
 the following :  ( a  ,  r B )  5  (85  deg ,  70  mm) and (110  deg ,  60  mm) in Figure 5 ;  ( a  ,  r B )  5
 (80  deg ,  150  mm) and (105  deg ,  60  mm) in Figure 6 .  As shown by insets in these figures ,
 heel angles diverge immediately .  If the ballast is set close to the pivot ,  the righting
 moment becomes small .  This situation is described by equation (6) with the  m   term
 larger than the  …   term .  According to the results of force tests ,  it is clear that the slopes
 of side forces are large .  Therefore ,  for the sail-ballast system ,   m   is larger than  …  .  The
 heeling force ,  i . e .,  the aerodynamic side force ,  becomes smaller as the angle of attack
 becomes larger .  Therefore the border-line goes down in Figures 5 and 6 as the angle of
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 Figure 6 .  Types of the rolling motion classified in the parameter plane ( a  ,  r B ) for the elliptic sail .  Each
 inset shows typical motion under the corresponding conditions denoted by the adjacent symbol ;  the abscissa
 of the inset represents time ,  and one division corresponds to 1  s ;  the ordinate of the inset denotes the heel

 angle ,  and one division corresponds to 20  deg .

 attack becomes larger .  The turning direction of the heel changes from screw-wise along
 z  direction to counter-screw-wise ,  as the side force changes its sign at the zero-lift
 angle .

 As stated in the theory section ,  motion becomes oscillatory with a larger moment of
 inertia and a smaller side force .

 The domain of divergent oscillation occurs under the following conditions :  (a) the
 angle of attack exceeds a certain value ;  (b) the righting moment is moderate .  The
 former condition is closely related to  C S , a ( a  ) .  The closer the angle of attack comes to
 the zero-lift angle ,  the steeper  C S , a ( a  ) becomes ,  as shown by Figure 4 .  The latter
 condition corresponds to a situation between those described by equations (4) and (6) .
 Mid-right portions of Figures 5 and 6 correspond to this domain .  Typical conditions ,
 denoted by solid triangles ,  are the following :  ( a  ,  r B )  5  (110  deg ,  150  mm) in Figure 5 ;
 ( a  ,  r B )  5  (110  deg ,  150  mm) in Figure 6 .  As shown by insets in these figures ,  heel angles
 exhibit divergent oscillation .

 The last domain consists of oscillation with very weak damping ;  in some cases
 damping ef fects are so small that oscillation seems purely periodic .  The upper portions
 of Figures 5 and 6 correspond to this domain .  Typical conditions ,  denoted by solid
 symbols ,  are the following :  ( a  ,  r B )  5  (90  deg ,  120  mm) and (105  deg ,  275  mm) for Figure
 5 ;  ( a  ,  r B )  5  (85  deg ,  260  mm) and (110  deg ,  280  mm) for Figure 6 .  As shown by insets in
 these figures ,  heel angles exhibit oscillation with weak damping .  The analysis of
 heel-angle measurements shows that the strength of damping is not consistently
 dependent on the parameters  a   and  r B ;  the damping varies and the variation is not well
 explained by these parameters .  In other words ,  the damping occurs rather probabilisti-
 cally .  Therefore ,  some portion of the damping should be attributed to the irregular
 forces .  The most plausible cause is friction working on the ball-bearings at the pivot .
 According to the definitions ,  the  τ  ,  m   and  …   terms become small as the ballast position
 r B   becomes large .  On the other hand ,   v   becomes close to unity in the same situation .
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 Therefore the motion becomes oscillatory and the friction becomes more dominant
 than the  m  2  …   term in this domain .

 5 . 3 .  I NTRODUCTION OF  G OVERNING  P ARAMETERS

 The parameters appearing in Figures 5 and 6 have dimensions .  In order to deduce the
 global conclusion from the results presented in the previous subsection ,  we shall modify
 these parameters .

 The ballast position  r B   corresponds to the strength of the righting moment .
 Therefore ,  it is appropriate to replace  r B   by the nondimensional righting moment .  We
 can define the nondimensional righting moment ,  denoted by  R ,  by using the
 aerodynamic moment ;  i . e .

 R  5
 Mr B g

 1 – 2 r U 2 Sr T
 .  (7)

 As stated in the theory section ,  the small side force induces oscillation .  Therefore it
 is natural to reduce the angle of attack by the zero-lift angle ,   a  2  a  0  .

 We have plotted boundaries of three domains for both sails in Figure 7 :  the results of
 motion analysis in the new parameter plane ( a  2  a  0  ,  R ) .  The coincidence of the lower
 boundaries ,  which divide divergent motion from oscillation ,  is remarkable .  We also
 point out the fact that divergent oscillation occurs in both sails for  a  2  a  0  $  2 10 8 .
 There is ,  however ,  a dif ference between triangular and elliptic sails with respect to the
 boundaries between divergent oscillation and weak damping oscillation .  The drag
 coef ficient of the elliptic sail is slightly larger than that of the triangular one in the
 vicinity of the zero-lift angle as shown by Figure 4 ;  therefore a bit stronger damping
 works for the elliptic sail .

 As mentioned above ,  we believe that there is a possibility of predicting the type of
 motion for any sail-ballast systems by using these parameters .  This idea will be useful
 at the conceptual design stage of a yacht .
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 Figure 8 .  Comparison of oscillation periods between theory [equation (5)] and experiments for the
 triangular sail .

 5 . 4 .  O SCILLATION  P ERIODS

 We have measured oscillation periods observed in the motion analysis .  Let us compare
 these data with the estimation based on equation (5) .  Figure 8 shows the results of the
 comparison for the triangular sail ,  and Figure 9 shows the results of the comparison for
 the elliptic sail .

 Estimated data are in fairly good agreement with experimental data .  This fact
 assures that our mathematical model describes the essential features of the rolling
 instability .  Although there are some data far from the estimation ,  these data are taken
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 Figure 9 .  Comparison of oscillation periods between theory [equation (5)] and experiments for the elliptic
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 fixed in flow at  a  5  90 8 :   C S   for the side force and  C D   for the drag .

 under conditions very close to the boundary between divergent and oscillatory motion .
 Therefore ,  the period becomes longer than for almost pure oscillation .

 5 . 5 .  C HARACTERISTICS OF  V ORTEX  S TREETS

 Figure 10 shows typical examples of flow visualization for the triangular sail fixed in
 flow .  Streak lines revealed the existence of vortices behind the sail .  The vortex close to
 the luf f is noticeably larger than the vortex close to the leech ,  because sails are highly
 tapered bluf f bodies .  These asymmetric vortices are also found in flow around the
 elliptic sail .  We are not sure if we can call these asymmetric vortices Ka ́  rma ́  n vortex
 streets .

 Figure 11 shows the example of the aerodynamic behavior of the triangular sail fixed
 in flow .  According to the motion analysis the oscillation period is around 1 – 3  s ,  but the
 side force does not oscillate over periods of several seconds .  Adding to that fact ,
 fluctuations of aerodynamic forces are intermittent and weak .  Similar data are obtained
 for the elliptic sail .

 Therefore ,  vortices behind sails act simply as initial disturbances to start up the
 rolling motion .  As stated above ,  the stability is governed by interaction between the
 aerodynamic forces and the righting moment .

 Once rolling oscillation occurs ,  vortices are shed due to the unsteady circulation
 generation ;  but these vortices dif fer from Ka ́  rma ́  n vortices .

 6 .  CONCLUSIONS

 We have conducted a study in simplified sail-ballast models to simulate the rolling
 motion of a yacht .  From the theoretical and experimental results we have drawn the
 following conclusions .

 (1)  We have derived the nonlinear equation of motion for the sail-ballast systems .
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 Figure 10 .  Examples of the flow around the triangular sail .  Photos are taken over the mast .  The sail is
 fixed in the flow .  The wind is from left to right .  The photo at the top shows clearly the large vortex on the luf f
 side (lower part of the photo) and vaguely the small one on the leech side (upper) .  The photo at the bottom

 shows clearly the small vortex on the leech side .
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 This equation describes the essential physics of the rolling instability ,  i . e .  the important
 interaction between the aerodynamic forces and the righting moment ,  as well as the
 instability induced by the steepness of  C S , a ( a  ) .

 (2)  Observation revealed three distinct types of motion :  divergence ,  divergent
 oscillation ,  and oscillation with weak damping .  There exist distinct boundaries that
 divide adjacent domains of typical motion in the parameter plane ( a  ,  r B ) .  Distribution
 of these domains can be defined very well on the basis of the governing equation .

 (3)  By introducing as parameters the nondimensional righting moment  R  and the
 angle of attack measured from the zero-lift angle  a  2  a  0  ,  the boundaries of motion
 domains for both triangular and elliptic sail-ballast systems become similar in the
 parameter plane ( a  2  a  0  ,  R ) .  This suggests the possibility of predicting the type of
 motion for any sail-ballast system by using these parameters .

 (4)  Periods estimated by the governing equation are in good agreement with
 experimental results .

 (5)  Vortices developed behind fixed sails have small amplitude and shorter periods
 than the rolling oscillation .  Therefore it is natural to think these vortices act only as
 initial disturbances .
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