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ON WIND-INDUCED OSCILLATION OF
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A yacht often rolls very violently when it is sailing down-wind. This divergent oscillation
may be dangerous enough to capsize the yacht. This study models a yacht as a sail-ballast
system rolling in a wind. A mathematical model is presented to account for this
phenomenon. Experiments have also been made for systems with triangular and elliptic
sails. Analysis of the nonlinear governing equation implies that the instability occurs owing
to coupling effects between aerodynamic and righting moments: in particular the large
change in the side force under a small change in the angle of attack. The experimental
results support this argument regarding interaction, as well as the existence of three
distinctive types of rolling motion: divergence, divergent oscillation, and oscillation with
weak damping. Estimated and measured periods of oscillation are in fairly good
agreement. Evidence supports the idea that vortices behind the sails are not the main
cause of the instability.

© 1997 Academic Press Limited

1. INTRODUCTION

DOWN-WIND SAILING IS NOT ALWAYS STABLE. A yacht often exhibits violent rolling, which is
self-excited and can capsize the craft. Marchaj (1988; pp. 653-675), a celebrated sailor
and yacht-scientist, offered an explanation for this self-excited rolling: (i) the Karman
vortex trail forces initial oscillation; (ii) this oscillation is then amplified by aerodyna-
mic forces. One of the questions is how aerodynamic forces govern the motion. We
shall also ask how the ballast at the keel tip affects the oscillation. What sort of
equation governs the motion? These questions have not been answered to date.

In order to cast light upon the physics behind the rolling instability, we will introduce
a simplified sail-ballast system. Our model is similar to Marchaj’s. A system has a sail
and a piece of ballast put on a single shaft that can roll in the wind. We have used
triangular and elliptic sails. These model systems represent the essential property of the
motion. Water and hulls affect down-wind sailing, but we have neglected these effects
due to limitations of available facilities. Our model, however, serves as a first
approximation to the actual phenomena.

By analysing the model systems theoretically and experimentally, we arrive at a
rigorous and sound explanation for the rolling instability of yachts. Our conclusion
emphasizes the important role played by the interaction between the aerodynamic
forces and the righting moment. The agreement between theoretical and experimental
results is fairly good.

In Section 2 we introduce the model system. Section 3 describes the derivation of the
equation governing the motion of the system and the analytical characteristics of the
associated nonlinear differential equation. Section 4 describes the procedure and
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Figure 1. Perspective view of the model system.

apparatus for the experiments. In Section 5 we show and discuss theoretical and
experimental results. In Section 6 we summarize our findings.

2. MODEL SYSTEM

The aim of this study is to understand the physics of rolling instability. The main
difficulty derives from the complicated geometry of a yacht as well as the existence of
two kinds of fluid, i.e., air and water. These characteristics can be circumvented,
however. We have modelled a yacht as a sail-ballast system, because this accurately
represents the essential configuration of a yacht. Due to limitations of available
facilities, we have used conventional wind tunnels only. Therefore our model could not
account for the following effects: (a) aerodynamic effects due to mirror images of sails;
(b) wind shear developed on the sea surface; (c) hydrodynamic damping due to the hull
and keel. These effects are to be studied in the future.

Our model is shown in perspective view in Figure 1 and in the schematic sketch at
the top of Figure 2. Instead of a sail, a hull and a keel with ballast in water and air, we
adopted a system with a sail and a piece of ballast set upon a single shaft. The system
can roll in the plane perpendicular to the wind direction.

3. THEORY

3.1. EQUATION OF MOTION

The model and coordinate system (r, B, z) are shown perspectively in Figure 1; r is the
coordinate up the mast from the center of rotation; B8 is a heel angle; and the z
coordinate is parallel to the direction of the uniform flow as well as the craft course.
The model could swing in the rolling plane, which is perpendicular to z. Swing twists
the direction of the relative wind: Uk + rBk x i, where U, k and i denote the speed of
the uniform flow, the unit vector in the z-direction, and the unit vector in the
r-direction, respectively; and a single dot denotes the first derivative with respect to
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time. This swing motion is rather slow, as our experiments reveal: a 0-5 m tall sail heels
at most 90 degs in a 7-7 m/s wind. The angle between the uniform flow and the relative

wind at r is approximated by
arctan(rB/U) =rB/U ~ 0(0-1).
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From this order estimate, we can deduce that the flow is quasi-steady: we shall neglect
any transient aerodynamic effects except the twist of the relative wind mentioned
above. Without loss of generality we can also state that three-dimensional effects are
included in forces shown at the bottom of Figure 2. The figure describes the force and
wind triangles at the sail section looking down from the mast top. Note that all the
aerodynamic forces are made nondimensional by dividing by the dynamic pressure
times, the chord length or the sail area. Let C, and C, be the sectional side force and
drag, respectively; then the aerodynamic heeling force assumes the form

Ci(a — rB/U, r)cos(rB/U) —Cyla — rB/U, r)sin(rB/U)
=Cy(a, r) — Cyo(a, r)rB/U — Cya, r)rB/U + @([32),

where C,, denotes the first derivative of C, with respect to «. We shall neglect
higher-order terms than B2 Integrating this sectional, aerodynamic heeling moment
along the mast, we have the equation of motion for the system about the center of
rotation, or the origin:

(I + Mry)B = %PUZSVT{QCS(C\’—) — [€2C54(@) + €5Cp(a)] ZB} —Mrggsin, (1)

where I, M, rg, p, S, rr, Cs and Cp denote, respectively, the moment of inertia with
the ballast at the origin, the mass of the ballast, the station of the ballast down from the
origin, the air density, the sail area, the mast height, the total side force coefficient, and
the total drag coefficient. Denoting the chord length by c(r), aerodynamic coefficients
€1, €, and €; are defined by

1Cs(a)

Cx(@)= [ Cula e drfS, - Coaa) ="

Cpla) = fo " Cola, Pe(r) dr/s,

q=qummmmqmm,

)

€= J’rT Cs,a(a’ r)c(r)r2 dr/{cs,a(a)r%"};

and
€= f " C e Ne(r)? dri{Co ()3

Dividing equation (1) by the total moment of inertia, we can rewrite the basic equation
as follows:

B=1+(u-v)B-w’sinp, @)
where
= €1 > y M= T € 2 ’
I+ Mry I+ Mry
3pUSrCp(a) _ | Mg
=€, > and o= -
I+ Mry I+ Mry

We should note that w is positive, because Cg,(«) is negative in the down-wind
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TaBLE 1
Classification for singular points of equation (2)

(n — v)* — 4w” cos By

non-negative negative

m — v positive  unstable node  unstable focus
ZEro center
negative stable node stable focus

condition. Although equation (2) is equivalent to those studied by Hayes (1953) and
Nayfeh & Mook (1979; pp. 131-134), the nature of our equation does not necessarily
lead to damped oscillation, unlike in those studies.

3.2. ANALYSIS OF THE GOVERNING EQUATION
Equation (2) has a stationary solution; putting 8 = 8 =0, we have the solution
B+ = arcsin(Tw ?). (3)

In other words, the system may come to equilibrium at 8= B, It is, however, not
known whether this equilibrium is dynamically stable or not.

After the standard procedure given by Nayfeh & Mook (1979; pp. 110-117), we can
study the stability of these stationary solutions, or the singular points in mathematical
terms.

Examining the Jacobian of equation (2), the nature of the basic equation is
summarized by Table 1. The relationships between mathematical terms and kinds of
motion are the following: (i) an ‘“unstable node” corresponds to divergent motion
without oscillation; (ii) an “unstable focus” corresponds to divergent oscillation; (iii) a
“center” corresponds to plane oscillation; (iv) a ‘“stable node” corresponds to
convergent motion without oscillation; (v) a ‘“stable focus” corresponds to convergent
oscillation. On the basis of Table 1 we can draw the following conclusions.

First we point out that the w — v term is the key to the stability. The u term depends
on Cg,, i.e. the lift-curve slope, while the v term depends on the drag coefficient C,.
Usually drag does not vary very much in value at a =~90°. Therefore the rolling
becomes unstable, as the lift-curve slope becomes steep.

Another point is the cause of oscillation: motion becomes oscillatory if the w” cos B
term becomes larger than the (u — v)* term. Since B, = arcsin(Tw ?), oscillation is
induced by larger w and smaller 7. This situation is brought about by the combination
of the larger moment of inertia and small side force; this fact leads to estimation of the
oscillation period. If w is much greater than T and u — v, equation (2) is approximated
by

B = —w”sin B. 4)

This is the well-known equation for large-amplitude oscillation of a pendulum. Suppose
the initial angular velocity is zero; then the oscillation period, say 7, is given by the
standard formula [e.g., equation (3.3.74) in Nayfeh & Mook (1979)]

I
T=2mlw=2T 0 4B (5)
Mrpgg g
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Another asymptotic form of equation (2) is obtained by letting w tend to zero. The
very small righting moment yields this situation. Neglecting the last term on the
right-hand side of equation (2), we obtain

B=1+(n—v)B. (6)

The equation above implies that the motion becomes divergent or convergent without
oscillation.

4. EXPERIMENTS

4.1. Force TEsTs

Figure 3 shows the schematic of the experimental system; the set-up for force tests is
shown on the right half of the figure. The smaller sail models were used for the force
tests: the length of luff is 0-28 m; the foot length is 0-14 m; the mast length from the
root is 0-3 m. The sails are made of a 0-03 mm thick mylar sheet. The Reynolds number
was 1-3 X 10° with the wind speed 11-0 m/s. The measurements were made at angles of
attack in the range of 90 + 20 deg by 5 deg increments. We have used a suction-type
wind tunnel with closed test-section: its cross-sectional dimensions are 0-6 m X 0-6 m.

Aerodynamic side force, drag, and moment were measured by the use of a
cantilever-type force balance. Analog data were digitized and then passed on to the
computer.

4.2. MOTION ANALYSIS

The set-up is described in the schematic diagram on the left half of Figure 3. The larger
sail models were used for the motion analysis: the length of luff is 0-4 m; the foot length
is 0-2 m; the mast length from the pivot is 0-5 m. Most parts of the system were made of
aluminum. The ballast consisted of a brass circular cylinder of 250 g. Positions of the
ballast could be set on the shaft in the range 30-300 mm from the pivot, in 10 mm
increments. Both the sail and the ballast are set upon a single shaft. The shaft could roll
in the plane perpendicular to the flow at the pivot. Another shaft runs streamwise
through this pivot, and is supported by a pair of ball-bearings.

We used a blow-down wind tunnel with open test section. The dimensions of the

! \ Blow-down wind tunnel thnnel )
! 1

3 Flow
i Rotary encoder
! E—
! O
! Model
Computer

Figure 3. Experimental apparatus.
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Figure 4. Aerodynamic characteristics of the sails.

outlet are 1-2 m X 1-2 m. The measurements were done at the wind speed of 7-7 m/s, so
that the Reynolds number was kept the same as in the force tests, i.e. 13 X 10°.

The measurements of heel angles were made by the use of an optical rotary-encoder,
which could detect an angle as small as 0-45 deg. Analog data were digitized and then
passed on to the computer.

We also conducted the flow visualization using the smoke-wire technique.

5. RESULTS AND DISCUSSION

5.1. AERODYNAMIC CHARACTERISTICS OF SAILS

Figure 4 shows the results of the force tests. Both sails have similar aerodynamic
characteristics: (i) the side force coefficients change from 0-8 down to around zero; (ii)
therefore the slope of the side force coefficients is negative and steep; (iii) changes in
drag coefficients are rather small, i.e. from 1-0 up to 1-4. The differences in planforms
are summarized in the following: (a) the side force coefficient of the elliptical sail is
smaller than that of the triangular sail; (b) the drag coefficient of the elliptic sail is
smaller than that of the triangular sail at almost every angle of attack. These
differences imply this well-known fact: the high efficiency of the elliptic wing. The
presence of the tunnel walls inevitably affects the aerodynamics of the force test
models. Therefore, the characteristics of the force test models may differ from those of
the sail-ballast systems quantitatively, although qualitative arguments are applicable to
both systems in the same manner.

Let us denote the angle of attack, at which the side force vanishes, by the zero-lift
angle, designated by «,. The zero-lift angle of the elliptic sail is about 110 deg; the
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Figure 5. Types of the rolling motion classified in the parameter plane (e, rz) for the triangular sail. Each
inset shows typical motion under the corresponding conditions denoted by the adjacent symbol; the abscissa
of the inset represents time, and one division corresponds to 1s; the ordinate of the inset denotes the heel

angle, and one division corresponds to 20 deg.

zero-lift angle of the triangular sail is about 105 deg. These angles will be referred to
later to annotate the results of the motion analysis.

5.2. MOTION OF SAIL-BALLAST SYSTEMS

Motion analyses were made under 252 sets of conditions for each model system: (28
ballast positions) X (nine values of angles of attack). Based on the observation and the
analysis of heel-angle measurements, we found that motions of each system could be
classified into three domains in the parameter plane, i.e. («, rz). Figure 5 shows the
results of motion analysis for the triangular sail-ballast system, and Figure 6 for the
elliptic sail-ballast system. Each inset in these figures shows the typical motion under
the corresponding conditions denoted by the adjacent symbol in each domain; the
changes in the heel angles are plotted against time. Bold lines represent boundaries
between adjacent domains.

The three typical domains correspond to the following: (i) divergent motion without
oscillation; (ii) divergent oscillation; (iii) oscillation with weak damping.

The domain of divergent motion is observed if the ballast-pivot distance is small, in
the lower portions of Figures 5 and 6. Typical conditions, denoted by open symbols, are
the following: («, rz) = (85deg, 70 mm) and (110 deg, 60 mm) in Figure 5; (a, rz) =
(80 deg, 150 mm) and (105 deg, 60 mm) in Figure 6. As shown by insets in these figures,
heel angles diverge immediately. If the ballast is set close to the pivot, the righting
moment becomes small. This situation is described by equation (6) with the u term
larger than the v term. According to the results of force tests, it is clear that the slopes
of side forces are large. Therefore, for the sail-ballast system, w is larger than v. The
heeling force, i.e., the aerodynamic side force, becomes smaller as the angle of attack
becomes larger. Therefore the border-line goes down in Figures 5 and 6 as the angle of
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Figure 6. Types of the rolling motion classified in the parameter plane («, rz) for the elliptic sail. Each
inset shows typical motion under the corresponding conditions denoted by the adjacent symbol; the abscissa
of the inset represents time, and one division corresponds to 1s; the ordinate of the inset denotes the heel

angle, and one division corresponds to 20 deg.

attack becomes larger. The turning direction of the heel changes from screw-wise along
z direction to counter-screw-wise, as the side force changes its sign at the zero-lift
angle.

As stated in the theory section, motion becomes oscillatory with a larger moment of
inertia and a smaller side force.

The domain of divergent oscillation occurs under the following conditions: (a) the
angle of attack exceeds a certain value; (b) the righting moment is moderate. The
former condition is closely related to Cs ,(«). The closer the angle of attack comes to
the zero-lift angle, the steeper Cs,.(«) becomes, as shown by Figure 4. The latter
condition corresponds to a situation between those described by equations (4) and (6).
Mid-right portions of Figures 5 and 6 correspond to this domain. Typical conditions,
denoted by solid triangles, are the following: («, rz) = (110 deg, 150 mm) in Figure 5;
(a, rg) = (110 deg, 150 mm) in Figure 6. As shown by insets in these figures, heel angles
exhibit divergent oscillation.

The last domain consists of oscillation with very weak damping; in some cases
damping effects are so small that oscillation seems purely periodic. The upper portions
of Figures 5 and 6 correspond to this domain. Typical conditions, denoted by solid
symbols, are the following: («, r5) = (90 deg, 120 mm) and (105 deg, 275 mm) for Figure
5; (e, rg) = (85 deg, 260 mm) and (110 deg, 280 mm) for Figure 6. As shown by insets in
these figures, heel angles exhibit oscillation with weak damping. The analysis of
heel-angle measurements shows that the strength of damping is not consistently
dependent on the parameters « and rg; the damping varies and the variation is not well
explained by these parameters. In other words, the damping occurs rather probabilisti-
cally. Therefore, some portion of the damping should be attributed to the irregular
forces. The most plausible cause is friction working on the ball-bearings at the pivot.
According to the definitions, the 7, w and v terms become small as the ballast position
rz becomes large. On the other hand, w becomes close to unity in the same situation.



442 T. SUGIMOTO

Therefore the motion becomes oscillatory and the friction becomes more dominant
than the w — v term in this domain.

5.3. INTRODUCTION OF GOVERNING PARAMETERS

The parameters appearing in Figures 5 and 6 have dimensions. In order to deduce the
global conclusion from the results presented in the previous subsection, we shall modify
these parameters.

The ballast position rz corresponds to the strength of the righting moment.
Therefore, it is appropriate to replace rz by the nondimensional righting moment. We
can define the nondimensional righting moment, denoted by R, by using the
aerodynamic moment; i.e.

_ Mrgg
%PU Sry’

As stated in the theory section, the small side force induces oscillation. Therefore it
is natural to reduce the angle of attack by the zero-lift angle, a — «,.

We have plotted boundaries of three domains for both sails in Figure 7: the results of
motion analysis in the new parameter plane (a — «q, R). The coincidence of the lower
boundaries, which divide divergent motion from oscillation, is remarkable. We also
point out the fact that divergent oscillation occurs in both sails for a« — ay= —10°.
There is, however, a difference between triangular and elliptic sails with respect to the
boundaries between divergent oscillation and weak damping oscillation. The drag
coefficient of the elliptic sail is slightly larger than that of the triangular one in the
vicinity of the zero-lift angle as shown by Figure 4; therefore a bit stronger damping
works for the elliptic sail.

As mentioned above, we believe that there is a possibility of predicting the type of
motion for any sail-ballast systems by using these parameters. This idea will be useful
at the conceptual design stage of a yacht.

™)

10

— Triangular sail
- ---- Elliptic sail

Nondimensional righting moment

0 \ \ \ 4
40 30 20 -10 0

Angle of attack measured from zero lift angle (deg)

Figure 7. Boundaries dividing the three distinctive type of motion in the parameter plane (a — «, R).
Bold and dashed lines denote boundaries for the triangular and elliptic sails, respectively.
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Figure 8. Comparison of oscillation periods between theory [equation (5)] and experiments for the
triangular sail.

5.4. OscILLATION PERIODS

We have measured oscillation periods observed in the motion analysis. Let us compare
these data with the estimation based on equation (5). Figure 8 shows the results of the
comparison for the triangular sail, and Figure 9 shows the results of the comparison for
the elliptic sail.

Estimated data are in fairly good agreement with experimental data. This fact
assures that our mathematical model describes the essential features of the rolling
instability. Although there are some data far from the estimation, these data are taken
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Figure 9. Comparison of oscillation periods between theory [equation (5)] and experiments for the elliptic
sail.
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Figure 11. Typical time history of the coefficients of the aerodynamic force acting on the triangular sail
fixed in flow at a =90°: Cg for the side force and Cj, for the drag.

under conditions very close to the boundary between divergent and oscillatory motion.
Therefore, the period becomes longer than for almost pure oscillation.

5.5. CHARACTERISTICS OF VORTEX STREETS

Figure 10 shows typical examples of flow visualization for the triangular sail fixed in
flow. Streak lines revealed the existence of vortices behind the sail. The vortex close to
the luff is noticeably larger than the vortex close to the leech, because sails are highly
tapered bluff bodies. These asymmetric vortices are also found in flow around the
elliptic sail. We are not sure if we can call these asymmetric vortices Karman vortex
streets.

Figure 11 shows the example of the aerodynamic behavior of the triangular sail fixed
in flow. According to the motion analysis the oscillation period is around 1-3 s, but the
side force does not oscillate over periods of several seconds. Adding to that fact,
fluctuations of aerodynamic forces are intermittent and weak. Similar data are obtained
for the elliptic sail.

Therefore, vortices behind sails act simply as initial disturbances to start up the
rolling motion. As stated above, the stability is governed by interaction between the
aerodynamic forces and the righting moment.

Once rolling oscillation occurs, vortices are shed due to the unsteady circulation
generation; but these vortices differ from Karman vortices.

6. CONCLUSIONS

We have conducted a study in simplified sail-ballast models to simulate the rolling
motion of a yacht. From the theoretical and experimental results we have drawn the
following conclusions.

(1) We have derived the nonlinear equation of motion for the sail-ballast systems.
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Figure 10. Examples of the flow around the triangular sail. Photos are taken over the mast. The sail is
fixed in the flow. The wind is from left to right. The photo at the top shows clearly the large vortex on the luff
side (lower part of the photo) and vaguely the small one on the leech side (upper). The photo at the bottom

shows clearly the small vortex on the leech side.
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This equation describes the essential physics of the rolling instability, i.e. the important
interaction between the aerodynamic forces and the righting moment, as well as the
instability induced by the steepness of Cg ().

(2) Observation revealed three distinct types of motion: divergence, divergent
oscillation, and oscillation with weak damping. There exist distinct boundaries that
divide adjacent domains of typical motion in the parameter plane («, rp). Distribution
of these domains can be defined very well on the basis of the governing equation.

(3) By introducing as parameters the nondimensional righting moment R and the
angle of attack measured from the zero-lift angle « — «,, the boundaries of motion
domains for both triangular and elliptic sail-ballast systems become similar in the
parameter plane (a — ag, R). This suggests the possibility of predicting the type of
motion for any sail-ballast system by using these parameters.

(4) Periods estimated by the governing equation are in good agreement with
experimental results.

(5) Vortices developed behind fixed sails have small amplitude and shorter periods
than the rolling oscillation. Therefore it is natural to think these vortices act only as
initial disturbances.
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